
 

 

 

I. INTRODUCTION 

 
Abstract— In this paper we will discuss the treat involving 

various forms of generalized Bessel functions of two-variable, 
in particular by outlining the linking between the second order 
differential equation of Bessel type and the different kinds of 
Bessel functions themselves. Furthermore, by using the 
formalism of the shift operators, we will present the Bessel 
operator and we will show how it can be useful to simplify the 
study of many properties related to Bessel functions. 

 
Keywords— Bessel Functions, Bessel Operator, Orthogonal 

Polynomials, Hermite Polynomials, Generating Functions.  

N many problems of pure and applied mathematics the use 
of generalized functions of special nature offer the 
possibility to express relevant relations in a particular 

concise form, which sometimes provides a deeper 
understanding of the problem itself. This is indeed what has 
happened in the theory of synchrotron radiation in which the 
use of multi-variable Bessel functions has provided a unique 
tool to derive the spectral details of the radiation emitted by 
relativistic electrons in magnetic structure in a analytical form 
not achievable with conventional means. Other problems of 
this type have benefited from the use of new families of special 
functions which sporadically appeared in the mathematical 
literature and then, for some reasons, totally forgotten. The 
number of problems demanding for an extension of the family 
of ordinary special functions is now growing. 

Systematic investigation to frame the new families within a 
coherent framework are now in progress. 

The theory of ordinary Bessel [1,2] functions is sometimes 
formulated starting from the generating function method. 
Accordingly, we introduce the two-variable one-parameter 
cylinder generalized Bessel function (GBF), using the 
following generating function: 
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Where ,x y ∈  and ,t τ ∈ , such that 0 | | | |t τ< ≠ < +∞ . It 

is immediately recognized that for 0y = , the function in the 
previous relation, reduces to the well-known generating 
function of the one-variable cylinder Bessel function ( )nJ x  
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and we can also immediately nothing that, the generalized two-
variable Bessel function ( , )nJ x y , can be viewed as particular 
case of the GBF of the parameter 1τ = . It is easily checked 
that the function ( , ; )nJ x y τ  can be exploited by means of the 
converging series: 
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after nothing that: 
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By setting it e θ=  and ie φτ = , where ( ), 0, 2θ φ π∈ , in the 

relation (1), we can immediately obtain the Jacobi-Anger 
expansion in the form: 

 

( )( )exp sin sin 2 ( , ; )in i
n

n
i x y e J x y eθ φθ θ φ

+∞

=−∞

 + + =  ∑  (5) 

 
The symmetry properties of the GBF ( , ; )nJ x y τ  can be 

inferred from its explicit form, stated in the equation (2); using 
the similar relation for the ordinary Bessel function [3], we get 
indeed: 

 
1 1( , ; ) ( 1) , ; , ;n

n n nJ x y J x y J x yτ
τ τ−

   = − − = − −   
   

 (6) 

( )( , ; ) , ;n nJ x y J x yτ τ− = −  (7) 

( )( , ; ) ( 1) , ;n
n nJ x y J x yτ τ− − − = −  (8) 
 
We can state the recurrence relations for the GBF 
( , ; )nJ x y τ , by using the generating function expression (1), 
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taking the derivative of both sides with respect to x, y, t and τ . 
We have: 
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Unlike the ordinary case, the recurrences of ( , ; )nJ x y τ  do 

not link the nearest neighbor index only. This is indeed due to 
the form of the generating function which involves the 

 
1t±  and 2t±  

terms. 
The second order differential equation satisfied by the 

ordinary Bessel function ( )nJ x  can be derived from the 
corresponding recurrences relation using a kind of operational 
techniques involving shift operators. We use a generalization 
of this method to derive the partial differential equations 
satisfied by the GBF ( , ; )nJ x y τ .  

By noting, in fact, that the last two recurrences stated above 
(eq. (10), (11)) for the ( , ; )nJ x y τ , can be combined to obtain: 
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which, can be rewritten as: 
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From the recurrence stated in (8), we can write: 
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The above relations can be combined in the previous 
recurrences to obtain the following relations: 
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The operators in the square brackets can be viewed as shift 

operators, in the sense that they act on the GBF’s shifting the 
index by one unit. We write therefore: 
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By noting that: 
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it can immediately proved that ( , ; )nJ x y τ  satisfies the partial 
differential equation: 
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and in more explicit form: 
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II. BESSEL OPERATOR 
In the previous section we have seen just an example of 

partial differential equation admitting the function ( , ; )nJ x y τ  
as solution. The further use of the shift operator technique 
allows the derivation of other partial differential equations 
satisfied by the Generalized Bessel Function [4]. Using the 
procedure outlined before, we can combine the recurrence 
relations stated in equations (8, 9, 10, 11) to introduce 
different operators. In fact, by manipulating the recurrence: 
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we immediately have: 
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After noting that the last relation contained in the equations 

(11) can be written as: 
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we can finally obtain the following recurrence relations for 

the generalized Bessel function ( , ; )nJ x y τ : 
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By following the same procedure used to introduce the shift 

operators of the previous section, we can use the above 
relations to introduce the operators: 
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which allow us to write the following equation: 
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that in explicit form,  provides the partial differential equation: 
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We can now combine the above equation, obtained by using 

the second type shift operators, and the similar partial 
differential equation, stated with the help of the shift operators 
defined in the previous section. We get: 
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where, with 
^

( )mB α  we denote the Bessel Operator defined as: 
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where 0,m n= . 

By deriving the first of recurrence relations with respect to x 
and then combining the result with recurrence involving the y-
derivative, we can introduce the operators: 
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and by following the same procedure of the previous 
calculation, we can immediately state: 
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Once we exploit the operators involving in the above 

equation, we obtain the third partial differential equation 
satisfied by the Bessel function of the type ( , ; )nJ x y τ ; that is: 
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Two sub-cases of the above equation are particularly 

interesting: 1τ =  and iτ = . 
When 1τ = , the above equation became: 
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Since ( , ;1)nJ x y  is the generalized Bessel function of two-

variable, that is ( , )nJ x y , it is evident to observe that it is the 
related differential equation associated to its. 

For iτ = , we obtain: 
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that is a Schrodinger-type equation [5].  
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III. OPERATIONAL RESULTS 
By using the relation stated in equation (1), that is the 

generating function of the two-variable Bessel function, we 
can immediately write: 
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where ,λ µ ∈ . By denoting with A the argument of the 
exponential, we have: 
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By substituting in the equation (41), we can write: 
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Exploited the exponentials and considering the expressions 

of the ordinary Bessel functions, we get: 
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By manipulating the r.h.s of the above relation, setting 

2m r s= +  and 2p k v= + , we obtain: 
 

( ) ( )

22

2 22 2 22 2

0 0

( , ; ) ( ) ( ) ( )

1 11 .
( 2 )! ! 2 2

s
n m

n m s s
n m s

p p v vp p v v

p v

t J x y t J x J y

x y
t p v v

µτλ µ τ λ
λ

λ µ λ
λ µτ

+∞ +∞ +∞

−
=−∞ =−∞ =−∞

  −
− +∞  

= =

 =  
 

− −       
      −      

∑ ∑ ∑

∑ ∑
 (44) 

 
By noting that, the multiplication theorem related to 

generalized two-variable Bessel function, reads as: 
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where: 
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we can finally state the important multiplication result for the 
generalized two-variable, one-parameter Bessel function: 
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IV. CONCLUDING REMARKS 
The two-variable extension of Hermite polynomials [6,7], 

defined by: 
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with generating function: 
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can be used to obtain a different expression of the 

operational results related to generalized Bessel functions, 
presented in the previous section. The Hermite polynomials 
are an important tool to facilitate the study of many classes of 
orthogonal polynomials as the Chebyshev polynomials [8], and 
of a wide class of special functions [9-12].  
We start to note that the two-variable Bessel function of the 
type ( , )nJ x y , can be written in the form: 
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and, symmetrically: 
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after noting that: 
 

( , ) ( , )n nJ x y J x y− = − −  . (52) 
 

By using these results, we can immediately state the 
following important expression for the two-variable, one-
parameter Bessel function: 
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In this paper we have seen the properties and the related 

applications of the family of the generalized Bessel functions 
of two-variable and one-parameter. We can now conclude this 
discussion to give an example of another family of Bessel-type 
functions which can be explored in a future article. By 
following the same procedure outlined for the Bessel function 
of the type ( , ; )nJ x y τ , we can introduce the generalized two-
index Bessel function, by setting: 
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where x ∈  and ,u v ∈ , such that 0 | | | |u v< ≠ < +∞ . 

The explicit form of this type of Bessel function can be 
immediately write: 
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As stated in the introduction, Bessel functions are a 

powerful tool adopted to solve different classes of problems in 
the area of physics and engineering. For instance, the relations: 
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where ( )v

nC x  are Gegenbauer polynomials [8], are used to 
study mono-dimensional electromagnetic problems in presence 
of edges [13-14]. Two-variables Hermite polynomials can be 
used to extend the above integrals to solve bi-dimensional 
problems too. 

In a forthcoming paper we will discuss deeply these 
arguments related to Bessel functions and two-variables 
Hermite polynomials. 
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